Intelligence artificielle : la stratégie du gouvernement est-elle suffisante ?

 |   |  1204  mots
Cédric Villani lors de la présentation de son rapport Donner un sens à l'intelligence artificielle, qui propose une réflexion sur l'intelligence artificielle, et sur la stratégie européenne et nationale à mettre en œuvre. L'objectif de ce rapport comme le dit l'auteur est de donner un cap, une signification et des explications.
Cédric Villani lors de la présentation de son rapport "Donner un sens à l'intelligence artificielle", qui propose une réflexion sur l'intelligence artificielle, et sur la stratégie européenne et nationale à mettre en œuvre. L'objectif de ce rapport comme le dit l'auteur est de donner un cap, une signification et des explications. (Crédits : Reuters)
Le gouvernement a bien compris l'intérêt de soutenir le développement de l'Intelligence artificielle (IA) qui va changer la stratégie des entreprises. Mais l'aspect technologique n'est pas le seul critère pour transformer efficacement des opportunités et créer de la valeur. Par Chafika Chettaoui, Docteure Ingénieure en Mathématiques, Responsable de la Data Science et du Consulting Analytics chez Teradata France.

Pas un jour sans qu'un article ne vante les vertus de l'Intelligence artificielle (IA) ou de l'analyse des données, dans l'accélération de la performance et l'amélioration de la productivité des entreprises. Les leaders sont les Etats-Unis, la Chine, l'Angleterre, le Canada et Israël, comme le souligne Cédric Villani, dans son rapport sur l'IA du 28 mars 2018. Il faut se rendre à l'évidence : les projets offrant un réel ROI (retour sur investissement) sont rares. La stratégie IA du gouvernement est nécessaire, mais est-elle suffisante ?

Sortir du labyrinthe des annonces pour une véritable stratégie IA. Seuls 4% des entreprises ont déployé au moins une application embarquant l'IA et 8 % sont en phase pilote, d'après les chiffres d'une étude IDC, parue en avril 2017, évaluant le taux d'adoption de l'IA dans la stratégie des entreprises françaises. Une autre enquête de l'IDC, Big Data and Analytics, publiée en juin 2017, évalue les revenus des logiciels analytiques globalement (IA compris) en France à  1,635 milliard de dollars.

A comparer ces deux études, nous observons que les organisations engagent un budget conséquent pour l'acquisition de solutions technologiques analytiques ; mais que ces chiffres ne traduisent pas un ROI, ni une transformation analytique interne suffisantes. Comprenons que nos industries engagent les moyens technologiques, mais n'offrent peut-être pas assez d'accompagnement interne pour en créer de la valeur pour les bons usages. Mais alors, comment s'assurer d'avoir les bonnes technologies et ressources ? Comment les transformer efficacement en véritables opportunités et actions en interne ?

En réponse, le gouvernement annonce plusieurs mesures, dont le financement de la recherche à hauteur de 1,5 milliard d'euros sur cinq ans. Le rapport Villani soulève également le problème sous l'angle de la fuite des cerveaux et du manque de moyens. Une stratégie de développement de centres de recherche dédiés est également en cours. Soit. Mais encore faut-il que nos industries osent intégrer ces méthodes dans leur mode d'activité interne.
Il s'agit là d'une nouvelle révolution où l'usage de la data est au centre de la décision dont il faudra comprendre les apports, limites et méthodes d'usage. C'est ici qu'intervient la notion clé de "change management". Nous parvenons au constat qu'une stratégie gouvernementale favorisant le développement de l'IA est nécessaire. Mais, il manque un aspect crucial pour la mise en œuvre concrète de cette stratégie : celui de l'accompagnement des entreprises et directions RH au change management et à la prise de risque. Il s'agirait de repenser une culture d'entreprise pour être plus data-driven (utiliser la donnée pour la prise de décision) et promouvoir l'approche de « Test and Learn ». Il faudrait être en mesure de concilier moyens, change management et dimension culturelle (prise de risque).

Démystifier l'apport de l'IA : le "change management"

La création de valeur à partir de l'IA et de l'analytique doit passer par une prise de conscience de ce qu'elles permettent et une compréhension de leurs limites. Disons-le, l'analyse de données n'est pas une science nouvelle. La grande distribution, par exemple, s'est toujours appuyé sur elle pour segmenter et identifier le profil de ses consommateurs. Il en va de même des banques et assurances qui, très tôt, ont utilisé des algorithmes de scoring pour identifier les clients à fort risque d'attrition (résiliation de contrat), etc.

Aujourd'hui, la révolution tient dans l'explosion des données disponibles - structurées et non-structurées et de toute nature (texte, voix, images, vidéos, etc.) - la puissance de calcul accessible et l'usage des méthodes de machine learning (méthodes d'apprentissage automatique) qui s'appliquent efficacement à ce nouvel environnement de données.

Cependant, dans toute notre clairvoyance d'analyste ou de mathématicien, nous n'avions pas prévu que cette accélération s'accompagnerait d'illusions. La crainte ou la frilosité de nos organisations vient de la méconnaissance de ces technologies. L'IA n'est qu'un moyen qui doit permettre d'accélérer la prise de décisions éclairées et maîtrisées, si elle est bien employée. Elle peut certes contribuer à l'automatisation de tâches et fonctions données... Une démystification doit passer par un accompagnement à tous les niveaux en commençant par les décideurs : ils devront avoir une culture data se traduisant notamment par une idée juste et pragmatique de l'apport de l'IA, des méthodes et outils, pour ne pas être confrontés à la déception, ou à l'indifférence (la croyance d'avoir déjà une stratégie IA).

Pour toute transformation, il est nécessaire de bien analyser les freins et les craintes pour les dépasser et continuer à construire. En effet, qui dit transformation dit changement dans le quotidien de travail. Ceci génère parfois de la peur et de la résistance. Cette résistance est souvent due à un manque de repères et une crainte pour le futur. Il est alors essentiel qu'une organisation projette ses collaborateurs post transformation, les rassure sur leurs missions et leur explique comment leur poste évoluera ; il s'agit dans ce cas de dire le bénéfice personnel et non uniquement organisationnel. Il est également essentiel d'identifier les personnes de confiance reconnues par leurs pairs. Elles seront les premières à adopter et à accompagner ces ajustements. La fédération est toujours plus facile avec des exemples réussis chez d'autres. Ce change management s'effectue donc tout au long de la chaine hiérarchique, avec le support des ressources humaines. Ces dernières, accompagnées par les directions digitales, jouent, du reste, un rôle crucial pour valoriser l'investissement consenti dans le sens de ces transformations.

Prenons enfin des risques !

Notre culture d'entreprise est réfléchie, prudente et accepte difficilement l'échec. La notion de prise de risque n'est pas aussi ancrée qu'elle peut l'être outre-Atlantique. Sans doute sommes-nous encore trop frileux face à la transformation de nos méthodes et habitudes de travail. Nos process et notre culture RH doivent évoluer.

Les domaines de l'analytique sont ceux de la prise de risque... un univers où il faut savoir parfois accepter les erreurs. Il s'agit de méthodes qui aident à guider dans les décisions, à analyser les situations en se basant sur des événements historiques ou appris.

Mais, comment encourager la prise de risque ? Il faut oser les projets analytiques et instaurer la culture du Test and Learn. Comprenez le droit à l'échec et la capacité à rebondir, pour mieux réussir. Il faudra également comparer le bénéfice/risque de leur usage versus leur non utilisation plutôt que le risque de leur usage dans l'absolu. Cela demande également d'avoir une vision d'impact à moyen/long terme et non un bénéfice court terme.

Les sociétés françaises doivent "oser" l'IA. Elle constitue un vrai accélérateur business et les décideurs doivent être de forts sponsors de cette stratégie digitale. Ce fort sponsoring nécessite un vrai engagement au sein du comité de décision de cette transformation et un partage de risque avec tous les acteurs. Les réussites se fêtent ensembles et les échecs se rediscutent ensemble pour mieux rebondir.

Réagir

Votre email ne sera pas affiché publiquement
Tous les champs sont obligatoires

Commentaires
a écrit le 09/09/2018 à 15:46 :
Il faut d'abord mettre une IA au Gouvernement, ensuite on verra. :-) Notre IA sera intégrée à des produits américains, Amaz*, Ub*, Micro*, App*, autres, tellement elle est excellente. Classique. Si y avait une usine dédiée, on pourrait la vendre en boites. :-)
a écrit le 08/09/2018 à 16:40 :
vous avez l'air de decouvrir comment ca marche, les boites francaises!
y a 20 ans, il s'est passe la meme chose en datamining ( et peu ou prou pareil avec les aps et autres erp, a la difference majeure que les erp etant lies au reporting, on fait au moins marcher la partie financiere)
autrement les boites invetstissent sans savoir a quoi ca sert ni ou elles vont rentabiliser; quand elles ont investi bcp d'argent, elles cherchent des bac/bac-2 avec un niveau stratospherique ( ce qui est normal car elles ont desormais des petits budgets et que les rh n'y compreent rien) pour faire tourner la machine...
quand ca marche pas et que ca interesse quand meme, on se dit que si c'est des maths, il faut un ingenieur, specialise en topologie mathematique, c'est ce qu'il y a de plus cale)
au bout du bout le projet n'est pas rentable, et on passe a la suite
les plus hardis se font quand meme refiler au passage une version up to date du logiciel ' qui resoud des pbs pas encore resolus' ( genre algo genetique a l'epoque); pour les cas presents, je sortirais la bouteille quand j'entendrai parler de LSTM optimises genetiquement...)
reste la partie theorique
le niveau des francais en maths est le meme que celui en langues
et les profs de fac sont deconnectes de bcp de choses
on ajoute le fait que tt le monde finit par avoir un doctorat ( ce qui faisait dire a un de mes amis HDR ' ton doctorat c'est un papier qui vaut rien, prouve qui tu es, ca sera mieux' - sans succes, cela dit)
last but not least, n'ayez pas trop d'illusion sur ce que fait la grande distrib francaise; y a bcp de flan, et compares aux britons, notamment, y a pas photo, mais c'est une opinion qui ne regarde que moi; je pensais pareil avant de rencontrer les gens...)
a écrit le 08/09/2018 à 15:26 :
Villany c'est un vieux bot !

Merci pour votre commentaire. Il sera visible prochainement sous réserve de validation.

 a le à :